Search results

Search for "capillary force" in Full Text gives 20 result(s) in Beilstein Journal of Nanotechnology.

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • placed in the gap between the supporting substrate and a capping layer [43][44][45]. On the other hand, capillary force can induce the formation of nanochannel gaps when a structural top layer is brought into contact with the bottom surface [43]. Through these techniques, structures that are at the
PDF
Album
Full Research Paper
Published 04 Jan 2023

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
PDF
Album
Review
Published 11 Apr 2022

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • conditions and the capacity dimension of the nanowires was obtained. Keywords: atomic force microscopy (AFM); capillary force; metal-assisted chemical etching (MACE); multifractal analysis; nanoarchitectonics; nanowires; self-assembly; Introduction In the last years, huge progress was made regarding the
  • surface [29][30]. Considering two adjacent NWs, first 1) the capillary force between them should be able to overcome the elastic force moving them back to the original straight position, in order to bring them into contact during the evaporation of the liquid. Then a stable bundle will occur if 2) the
  • single value but a range of values of a) E = 80–120 GPa [33] and of b) γHF from 0.5 mN/m [34] to 10.2 mN/m [35]. A value of θ = 70° has been found for silicon surfaces and HF [36]. The range of values for the capillary force has thus been estimated to be 3–65 pN, which is orders of magnitude greater than
PDF
Album
Full Research Paper
Published 31 Oct 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • -sized graphene flake wherein we have induced a further rotation of the flake utilizing the capillary forces at play at a solid–liquid interface using STM tip motion. We propose a more “realistic” tip–surface meniscus relevant to STM at solid–liquid interfaces and show that the capillary force is
  • sufficient to account for the total expenditure of energy involved in the process. Keywords: capillary force; graphene; graphite; HOPG; moiré; solid–liquid interface; STM; superlattice; Introduction Graphite is a layered material with graphene sheets arranged in ABAB stacking. HOPG is an ordered form of
  • an STM image is a map of the local electronic density of states (LDOS), such electronic modifications may be visualized in real space. When STM is operated at solid–liquid interfaces, the capillary force due to the meniscus formed between the tip and the surface could be utilized for mechanically
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Single-crystalline FeCo nanoparticle-filled carbon nanotubes: synthesis, structural characterization and magnetic properties

  • Rasha Ghunaim,
  • Maik Scholz,
  • Christine Damm,
  • Bernd Rellinghaus,
  • Rüdiger Klingeler,
  • Bernd Büchner,
  • Michael Mertig and
  • Silke Hampel

Beilstein J. Nanotechnol. 2018, 9, 1024–1034, doi:10.3762/bjnano.9.95

Graphical Abstract
  • via capillary force [38][39][40]. Due to the attractive properties of Fe–Co nanoparticles, this work is directed towards the synthesis of CNT-based nanocomposites of Fe–Co based on a post-synthesis method, in which prefabricated multiwalled CNTs (MWCNTs) are used as templates. Two facile filling
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • of the two contacting solids within the liquid, and the capillary force Fc, due to the Laplace pressure of the water meniscus forming between the tip and the sample [33][34]: For a spherically shaped meniscus, Fc in first order by [35] can be written as where RT = 10 nm is the tip radius, θSL = 5
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Single-step process to improve the mechanical properties of carbon nanotube yarn

  • Maria Cecilia Evora,
  • Xinyi Lu,
  • Nitilaksha Hiremath,
  • Nam-Goo Kang,
  • Kunlun Hong,
  • Roberto Uribe,
  • Gajanan Bhat and
  • Jimmy Mays

Beilstein J. Nanotechnol. 2018, 9, 545–554, doi:10.3762/bjnano.9.52

Graphical Abstract
  • ). The CNT yarn treated with AN and irradiation showed a rougher surface. The CNT yarn treated with AA exhibited a smoother appearance but wavy extensions protrude from the surface as shown in Figure 6. This is probably related to hydrophobic interactions, van der Waals and capillary force interactions
PDF
Album
Full Research Paper
Published 13 Feb 2018

Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles

  • Agata Siarkowska,
  • Miłosz Chychłowski,
  • Daniel Budaszewski,
  • Bartłomiej Jankiewicz,
  • Bartosz Bartosewicz and
  • Tomasz R. Woliński

Beilstein J. Nanotechnol. 2017, 8, 2790–2801, doi:10.3762/bjnano.8.278

Graphical Abstract
  • -doped LC mixture was heated above the 6CHBT N–I phase transition temperature and then introduced into the PCF by capillary force. Unlike in previous experiments, where the sample was observed under a polarizing microscope, here we focused on the light exiting the fiber core. The preliminary part of the
PDF
Album
Full Research Paper
Published 27 Dec 2017

Correlative infrared nanospectroscopic and nanomechanical imaging of block copolymer microdomains

  • Benjamin Pollard and
  • Markus B. Raschke

Beilstein J. Nanotechnol. 2016, 7, 605–612, doi:10.3762/bjnano.7.53

Graphical Abstract
  • operating in the repulsive capillary force regime. Tip–surface capillary forces are most studied in the context of resonant cantilever motion instead of the slower, nonresonant distance modulation employed in PF-QNM. Nonetheless, our modulation amplitude (15 nm), measured tip radius (16–25 nm), and the
PDF
Album
Full Research Paper
Published 22 Apr 2016

Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

  • Annalisa Calò,
  • Oriol Vidal Robles,
  • Sergio Santos and
  • Albert Verdaguer

Beilstein J. Nanotechnol. 2015, 6, 809–819, doi:10.3762/bjnano.6.84

Graphical Abstract
  • the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation
  • ]. Expressions for the capillary force (FCAP) based on these assumptions (see Equation 10 in the Experimental section) have been employed in dynamic AFM, together with more complex derivations based on the limit of a constant meniscus volume [3][14]. The approximation that assumes a constant volume of the
  • discontinuity is observed at d = don in the Fts*, Ediss* and ΔΦ* signals (see respectively the blue, the cyan and the dashed red lines in Figure 3b). This effect becomes more pronounced when a capillary force such as the one described in Equation 11 is employed (see the blue, cyan and dashed red lines in Figure
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2015

Applications of three-dimensional carbon nanotube networks

  • Manuela Scarselli,
  • Paola Castrucci,
  • Francesco De Nicola,
  • Ilaria Cacciotti,
  • Francesca Nanni,
  • Emanuela Gatto,
  • Mariano Venanzi and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 792–798, doi:10.3762/bjnano.6.82

Graphical Abstract
  • wettability is well described by a Cassie–Baxter model [20] for which a quite rough surface allows air trapping and ensures the high contact angle measured. In particular, in such a system pores in the random network (i.e., void fraction) favor air trapping due to the strong capillary force that the surface
PDF
Album
Full Research Paper
Published 23 Mar 2015

Topology assisted self-organization of colloidal nanoparticles: application to 2D large-scale nanomastering

  • Hind Kadiri,
  • Serguei Kostcheev,
  • Daniel Turover,
  • Rafael Salas-Montiel,
  • Komla Nomenyo,
  • Anisha Gokarna and
  • Gilles Lerondel

Beilstein J. Nanotechnol. 2014, 5, 1203–1209, doi:10.3762/bjnano.5.132

Graphical Abstract
  • particles. Direct observation shows that the main factor responsible for the ordering to occur in two dimensions is the capillary force, which is related to the evaporation rate. Therefore, the control of the evaporation rate can result in the formation of either a monolayer or multilayers [21]. The
PDF
Album
Full Research Paper
Published 04 Aug 2014

Physical principles of fluid-mediated insect attachment - Shouldn’t insects slip?

  • Jan-Henning Dirks

Beilstein J. Nanotechnol. 2014, 5, 1160–1166, doi:10.3762/bjnano.5.127

Graphical Abstract
  • adhesive pad can play an important role in determining the capillary adhesion [51][52]. In these models the overall capillary force is taken as the sum of the capillary attraction and the counter-acting elastic repulsion of the deformed pad/substrate (which depends on the elastic modulus). In simple terms
  • increases the capillary force. This extended capillary model might add an explanation why some insects (and tree frogs) have soft toe pads [51]. It should also be noted that in particular in the context of insect adhesion the mechanics described by the third viscous forces, or “Stefan adhesion” term, are a
PDF
Album
Video
Review
Published 28 Jul 2014

Colloidal lithography for fabricating patterned polymer-brush microstructures

  • Tao Chen,
  • Debby P. Chang,
  • Rainer Jordan and
  • Stefan Zauscher

Beilstein J. Nanotechnol. 2012, 3, 397–403, doi:10.3762/bjnano.3.46

Graphical Abstract
  • lithography [18], electron-beam chemical lithography [19], microcontact printing (µCP) [20], scanning-probe lithography [21] and capillary-force lithography [22], have been exploited over the years, there is still considerable interest in the exploitation of new, simple patterning strategies that do not
PDF
Album
Full Research Paper
Published 15 May 2012

Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

  • Tanujjal Bora,
  • Htet H. Kyaw,
  • Soumik Sarkar,
  • Samir K. Pal and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2011, 2, 681–690, doi:10.3762/bjnano.2.73

Graphical Abstract
  • -tert-butylpyridine (TBP) in acetonitrile (ACN), by using capillary force, through two small holes ( = 1 mm) drilled on the counter electrode. Finally the two holes were sealed by using another piece of surlyn to prevent the electrolyte from leaking out of the cell. Sample preparation for the
PDF
Album
Full Research Paper
Published 13 Oct 2011

Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

  • Sławomir Boncel,
  • Krzysztof Z. Walczak and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2011, 2, 311–317, doi:10.3762/bjnano.2.36

Graphical Abstract
  • liquid in a rate that can be linearly correlated to dynamic viscosity of the liquid (η). The experimental results follow the classical theory of capillarity for a steady process (Lucas–Washburn law), where the nanoscale capillary force, here supported by gravity, is compensated by viscous drag. This most
  • law refers to a quasi-steady state of the liquid flow by the capillary action, where capillary force, expressed by the above thermodynamic parameters, contact angle (θ) and surface tension (γL), is compensated by gravity and viscous drag [35]. The height of the meniscus of the infiltrating liquid
PDF
Album
Letter
Published 20 Jun 2011

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • adequate nano-sculpting on top. The combination of high (40.2 µm) and extremely peaked micropapillae with very fine folds (260 nm) on top apparently prevents water from penetrating into the structures by capillary force (Supporting Information File 1, Figure S2). A high standard deviation in Viola
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • , the magnitude of friction and adhesion forces is strongly dependent on the capillary force that is related to the intrinsic wetting properties of the interfacial system. As a consequence, the resulting water meniscus (or layer) can either increase friction through increased adhesion in the contact
PDF
Album
Full Research Paper
Published 04 Feb 2011

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • meniscus is formed around two adjacent particles during the evaporation of the solvent. Due to the linear dependence of the capillary force on the particle diameter, the action is stronger the larger the particles. Therefore, although suspended in the same solvent, smaller particles show a lower degree of
PDF
Album
Review
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities